Design, Analysis and Control of a Wheeled Mobile Robot with a Nonholonomic Spherical CVT

نویسندگان

  • Jungyun Kim
  • Frank Chongwoo Park
  • Yeongil I. Park
چکیده

This article reports on the design, analysis and control of a new type of wheeled mobile robot based on a nonholonomic spherical continuously variable transmission (S-CVT). Our S-CVT based mobile robot is designed to increase the run time (i.e., the length of time in which the robot can be operated), and to achieve full planar accessibility with the design of a novel pivoting device that takes advantage of the flexibility of the S-CVT. We examine the sources of power loss in the S-CVT, in particular spin loss. For a quantitative analysis of spin loss of the S-CVT, we develop a friction model for the S-CVT, and perform an in-depth contact analysis based on the relative velocity field and normal pressure distribution. We also present a nonlinear shifting controller based on feedback linearization that takes into account the dynamics of the S-CVT. To evaluate the energy efficiency of our mobile robot and the performance of the S-CVT as a machine element, we perform experiments with a hardware prototype. The results are benchmarked numerically with a differential drive type mobile robot equipped with a reduction gear. KEY WORDS—continuously variable transmission, spin loss, feedback linearization, mobile robot

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator

This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...

متن کامل

Dynamical formation control of wheeled mobile robots based on fuzzy logic

In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Fuzzy Motion Control for Wheeled Mobile Robots in Real-Time

Due to various advantages of Wheeled Mobile Robots (WMRs), many researchers have focused to solve their challenges. The automatic motion control of such robots is an attractive problem and is one of the issues which should carefully be examined. In the current paper, the trajectory tracking problem of WMRs which are actuated by two independent electrical motors is deliberated. To this end, and ...

متن کامل

Investigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)

This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2002